Name: Andrew Id:

15-112 Spring 2019 Quiz 8
Up to 25 minutes. No calculators, no notes, no books, no computers. Show your work!

1. (30 points) Free Response: Write the function cheapestProducts(pricelist) which, given a list of
tuples each containing the product name, store name, and price of a product, returns a dictionary mapping
product names to a tuple containing the store and price for the lowest price found for the item. In the event
of a tie, either store may be used.

Consider the following example. If
productList = [("X-Box", "LuLu", 1200),
("iPhone XR", "Carrefour", 3000),
("Washer", "SafariMart" , 799),
("iPhone XR", "Al Anees" , 2870),
("Washer", "LuLu", 899)
]

then cheapestProducts(pricelist) returns a dictionary containing...
{'X-Box': (1200, 'LuLu'), 'iPhone XR': (2870, 'Al Anees'), 'Washer': (799, 'SafariMart')}

To get full credit, your solution must run in O(N) time, where N = len(productList).

2. (20 points) Short Answer: For both of the two functions shown below, write next to each line of the
function either the Big-O runtime of the line. (For loop lines, instead write the number of times the line
loops). Then write the total Big-O runtime of the function in terms of N in the box to the right of the code.
You must write in the Big-Os/number of loops of each line to get full credit.

def fi(n): # n is an int, N = n
ret = []
for i in range(n):
for j in range(i+l,n):
ret.append(i+j)
return ret

def f2(L): # L contains N items
allowedWords = ["surround", "friend", "stop"]
newList = []
for w in L:
if w in allowedWords:
newList.append(w)
for w in allowedWords:
if w in L:
L.remove (w)
L.sort ()
L.extend (newList)
return L

H oH H H H HHHHHHH

Big-O Runtimes for a List
len(lst) ==

1st.append(item) | O(1)

1st.remove(item) | O(N)

item in lst O(N)

lst.sort () O(N log N)
1st.extend(1st2) | O(k) where len(1lst2) ==

Page 2

3. (15 points) Short Answer: Briefly explain why mutable data types can’t be used as items in a set or as
keys of a dictionary

4. Short Answer: The following function returns the number of elements in L that also have their square in
L. This function is less efficient than it could be. Briefly describe how to change the function to make it
more efficient without completely changing the algorithm. Your answer must change the function family of
the program’s runtime.

1 def countSquares(L):

2 count = 0

3 for item in L:

4 square = item**2

5 if item != square and square in L:
6 count += 1

7 return count

(a) (5 points) What is the Big-O efficiency of this function?

(b) (10 points) Briefly describe how to change the function to make it more efficient without completely
changing the algorithm. Your answer must change the function family of the program’s runtime. Also
state the Big-O efficiency the function with your changes.

Page 3

5. (20 points) Code Tracing: Indicate what the following program prints. Place your answer (and nothing
else) in the box under the code.

def ct(L):
a = dict()
for b in L:
if b[0] not in a:
al[b[0]] = set()
a[b[0]].add(b)

k = a.keys()

o = sorted(list(k))
print(len(k))

print (o)
print(alo[-1]11)

m = ["surround", "friend", "stop", "plane", "glossy", "bouncy", "puncture",
"mate", "plant", "chin", "powerful", "cars"]
ct (m)

Page 4

