
15-112 Homework 4 Page 1 of 6

15-112: Introduction to Programming and Computer Science,
Spring 2020

Homework 4: Strings

Due: Wednesday, February 12, 2020 by 22:00

This assignment has 7 questions, for a total of 50 points.
To start this homework....

1. Create a folder named “week4”

2. Create a file called hw4.py and write all your code in that file.

3. When you have completed and fully tested hw4, submit hw4.py to Autolab. For this
hw, you may submit up to 15 times, but only your last submission counts.

Some important notes:

1. You may not use sets, dictionaries, try/except, or classes on this homework.

2. After you submit to Autolab, make sure you check your score. If you aren’t sure how
to do this, then ask a CA or Professor.

3. There is no partial credit on Autolab testcases. Your Autolab score is your Autolab
score.

4. Read the last bullet point again. Seriously, we won’t go back later and increase your
Autolab score for any reason. Even if you worked really hard and it was only a minor
error...

5. Do not hardcode the test cases in your solutions.

6. Remember the course’s academic integrity policy. Solving the homework yourself is
your best preparation for exams and quizzes; cheating or short-cutting your learning
process in order to improve your homework score will actually hurt your course grade
long-term.

7. Your code will be graded for style. Check the style notes on the website for details.

15-112 Homework 4 Page 2 of 6

1. [5 points] consonantCount(s)

Write the function consonantCount(s), that takes a string s, and returns the number of
consonants in s, ignoring case, so "B" and "b" are both consonants. The consonants are
all of the English letters except "a", "e", "i", "o", and "u". So, for example:

assert(consonantCount("Abc def!!! a? yzyzyz!") == 10)

2. [5 points] topScorer

Write the function topScorer(data) that takes a multi-line string encoding scores as csv
data for some kind of competition with players receiving scores, so each line has comma-
separated values. The first value on each line is the name of the player (which you can
assume has no integers in it), and each value after that is an individual score (which you
can assume is a non-negative integer). You should add all the scores for that player, and
then return the player with the highest total score. If there is a tie, return all the tied
players in a comma-separated string with the names in the same order they appeared
in the original data. If nobody wins (there is no data), return None (not the string
"None"). So, for example:

data = '''\
Fred,10,20,30,40
Wilma,10,20,30
'''
assert(topScorer(data) == 'Fred')

data = '''\
Fred,10,20,30
Wilma,10,20,30,40
'''
assert(topScorer(data) == 'Wilma')

data = '''\
Fred,11,20,30
Wilma,10,20,30,1
'''
assert(topScorer(data) == 'Fred,Wilma')

assert(topScorer('') == None)

Hint: you may want to use both splitlines() and split(’,’) here!

15-112 Homework 4 Page 3 of 6

3. [6 points] getQuizAverages

Write the function getQuizAverages(filename) that takes the name of a file containing
quiz scores for a course in CSV format.

The first value on each line is the name of the student (which you can assume has no
integers in it), and each value after that is an individual score (which you can assume is
a non-negative integer) out of 100. You should compute the average quiz score for each
student and return a list containing tuples of (name, avg) pairs. The order of tuples in
the returned list should match the order that students are found in the file.

There are some important things to note:

• If a score is the character "-", then that means the student was exempted from that
quiz and it should not be factored into their grade at all.

• If a score is missing, then the student did not complete the quiz and it should count
as a 0.

• The lowest score for each student should be dropped prior to computing the average.

• In your tuple containing the name and quiz average, the quiz average should be a
string of the quiz average accurate to 2 decimal places.

If the file contains no score data, then return None.

So, for example:

Imagine the file contains the following three lines and
is named "whatever.txt".
'''
Fred,11,20,30,10,12
Wilma,10,20,,1,25
Barney,10,5,-,20,25
'''
assert(getQuizAverages("whatever.txt")

== [('Fred', '18.25'), ('Wilma', '14.00'), ('Barney', '18.33')])

Hint: You should probably look at the notes on string formatting to think about how
to handle converting the average to a string.

15-112 Homework 4 Page 4 of 6

4. [6 points] applyCaesarCipher(message, shift)

A Caesar Cipher is a simple cipher that works by shifting each letter in the given message
by a certain number. For example, if we shift the message "We Attack At Dawn" by 1
letter, it becomes "Xf Buubdl Bu Ebxo".

Write the function applyCaesarCipher(message, shift) which shifts the given message by
shift letters. You are guaranteed that message is a string, and that shift is an integer
between -25 and 25. Capital letters should stay capital and lowercase letters should stay
lowercase, and non-letter characters should not be changed. Note that "Z" wraps around
to "A". So, for example:

assert(applyCaesarCipher("We Attack At Dawn", 1) == "Xf Buubdl Bu Ebxo")
assert(applyCaesarCipher("zodiac", -2) == "xmbgya")

5. [8 points] isFloat Error Checking

We have seen in some lecture notes that if we want to read a float from the user, we use
the function input() to read a string from the user and then use the function float() to
convert that string to a float number. We also learned that if the user enters an invalid
number, our program will crash. Now we don’t like programs that crash. So, we would
like to check if a string can be a float before we attempt to convert it to a float. This
way, if the string is not float, we can print an error message and exit gracefully instead
of crashing the program. If would be nice to have a function called isFloat that takes an
input of string and returns back True if the input is a valid float and False if it is not.
We can use this function in our programs as given below:

inp = input("Enter your QPA: ")
if(not isFloat(inp)):

print ()"You entered a value that is not a valid QPA. Exiting gracefully :)")
exit()

else:
we can safely decode the float now
qpa = float(inp)

Your task is to write the isFloat function that checks the string passed to it for validity
of being a float number. If the input is a valid float number, it should return True,
otherwise, it should return False. We will be calling the function as shown in the above
example, so make sure the return values, function name, and input parameters are
appropriate. You should NOT use a try/except structure for this function.

https://en.wikipedia.org/wiki/Caesar_cipher

15-112 Homework 4 Page 5 of 6

6. [10 points] Oh So Many Units Most questions of physics and chemistry require con-
version between units to get the correct units needed for an equation. Einstein’s famous
equation E = mc2 allows you to find Energy in Joules when you multiply mass in Kilo-
grams by the square of the speed of light in meters per second. For this equation to
work correctly, the units of each quantity have to be exact. If I know the mass of an
object in pounds (pounds measure force but oh well), I would have to convert pounds
to kilograms first and then apply the equation. In this task, we (that means you) will
be performing conversions with length, mass, time and volume units.

Write a function called convertUnits that takes 4 input arguments. These inputs are
fromQuantity, fromUnit, toUnit, and category. “fromQuantity” is an amount that rep-
resents a quantity in “fromUnit” units. Your function should convert “fromQuantity” in
“fromUnit” units, to a number in “toUnit” units. You should follow the tables below and
only use the numbers in the table or else you will not get the points.

For example, the function call convertUnits(1000.0,“mm”,“m”,“length”) is asking you to
convert 1000.0 millimeters to meters using length category. The return value of the
above call should be 1.0.

The function call convertUnits(156.5,“lb”,“kg”,“mass”) converts 156.6 pounds to kilograms
and returns 70.987148.

Your function should be able to handle the following units - we will only ask you to
convert between units that belong to the same category (for example, we will not ask
you to convert between seconds and meters):

Unit Description Category Conversion
g grams mass 1 g = 10−6 ton
g grams mass 1 g = 0.0022 lb
ton tons mass 1 ton = 106 g
lb pounds mass 1 lb = 453.592 g
s seconds time 1 s = 0.0003 hr
s seconds time 1 s = 0.0167 min
hr hours time 1 hr = 3600.0 s
min minutes time 1 min = 60.0 s
m meters length 1 m = 1.0936 yard
m meters length 1 m = 3.2802 feet
m meters length 1 m = 39.3701 inch

yard yards length 1 yard = 0.9144 m
foot feet length 1 foot = 0.3048 m
inch inches length 1 inch = 0.0254 m
C Celsius temperature Kelvin = Celsius + 273.15
K Kelvin temperature Celsius = Kelvin - 273.15
C Celsius temperature Fahrenheit = (9/5)*Celsius + 32
F Fahrenheit temperature Celsius = (5/9)*(Fahrenheit - 32)

15-112 Homework 4 Page 6 of 6

Your function should also be able to handle the following prefixes before each unit.

Prefix Symbol in function Meaning
Terra T 1012

Giga G 109

Mega M 106

Kilo k 103

Deci d 10−1

Centi c 10−2

Milli m 10−3

Micro u 10−6

Nano n 10−9

Pico p 10−12

7. [10 points] bestScrabbleScore(dictionary, letterScores, hand)
Background: In a Scrabble-like game, players each have a hand, which is a list of low-
ercase letters. There is also a dictionary, which is a list of legal words (all in lowercase
letters). And there is a list of letterScores, which is length 26, where letterScores[i] con-
tains the point value for the ith character in the alphabet (so letterScores[0] contains the
point value for ’a’). Players can use some or all of the tiles in their hand and arrange
them in any order to form words. The point value for a word is 0 if it is not in the dic-
tionary, otherwise it is the sum of the point values of each letter in the word, according
to the letterScores list (pretty much as it works in actual Scrabble).
In case you are interested, here is a list of the actual letterScores for Scrabble:

letterScores = [
a, b, c, d, e, f, g, h, i, j, k, l, m

1, 3, 3, 2, 1, 4, 2, 4, 1, 8, 5, 1, 3,
n, o, p, q, r, s, t, u, v, w, x, y, z

1, 1, 3,10, 1, 1, 1, 1, 4, 4, 8, 4,10
]

Note that your function must work for any list of letterScores as is provided by the caller.
With this in mind, write the function bestScrabbleScore(dictionary, letterScores, hand)
that takes 3 lists -- dictionary (a list of lowercase words), letterScores (a list of 26
integers), and hand (a list of lowercase characters) -- and returns a tuple of the highest-
scoring word in the dictionary that can be formed by some arrangement of some subset
of letters in the hand, followed by its score. In the case of a tie, the first element of the
tuple should instead be a list of all such words in the order they appear in the dictionary.
If no such words exist, return None.
Note: you should definitely write helper functions for this problem! In fact, try to think
of at least two helper functions you could use before writing any code at all.
Another note: there is no fixed dictionary here. Each time we call the function, we may
provide a different dictionary! It may contain 100 words or perhaps 100,000 words.

