15-112 Homework 5 Page 1 of 8

15-112: Introduction to Programming and Computer Science,
Spring 2020

Homework 5: Processing Images

Due: Tuesday, February 25, 2020 by 22:00

This programming homework is designed to get you more practice with processing images
and applying the skills you have learned to solve real world problems.

Your submission will be made through the web interface of Autolab. In this homework,
you will be writing several functions. Write all functions in the same file and call that file
hwb.py. You should not have any test code in this file besides the function definitions plus
any other helper functions you want to write. You should not have any main code that
is executed. Your functions should be named according to the specifications given in the
questions below. Again, if you want to write helper functions within the same file to help you
organize your code, you are more than welcome to do so and you can name them whatever
you want. You should submit this python file under the Homework 5 option at:

https://autolab.andrew.cmu.edu/courses/15112q-s20

1 Cops!

As traffic accidents increase due to over speeding and other traffic violations, it becomes
important for law enforcement agencies to find technological solutions to detect these vio-
lations. In Qatar, the government has placed high resolution cameras on various roads and
highways that detect speeding motorists and take a picture of their vehicles. These images
are then processed to detect the license plate numbers and issue tickets accordingly.

Your task, in this homework, is to take an image of a license plate and programmatically
(by writing a computer program) determine the license plate number. Each task in this
homework will help you achieve this goal.

This homework needs the ImageWriter Library that can be downloaded from the notes
on Image Processing on the course website. The ImageWriter library uses another library
called “opencv” for image processing. The opencv library is installed in the cluster computers
in rooms 1032, 2035, and 1185. If you use a personal computer, make sure that you install
this library by following the instructions given on the resource section of the course website.
If you have “pip” installed, you should be able to install opencv by running the following
command from a shell or command prompt:

pip3 install opencv-python

https://www.cs.cmu.edu/~112q/notes/image-proc/ImageWriter.py

15-112 Homework 5 Page 2 of 8

2 Normalization

Before we can start processing a License plate, it is import for us to reduce the number of
colors in the image. This process of color reduction is called normalization and we can do
this by converting the image to black and white. This process helps us reduce the amount
of information that we have to process. So the first step is to convert this colored image to
black and white image. We take each pixel of the image and if the average proportion of
all three values: R, G and B is less than 100, we set the colors to 0 otherwise we set each
component to 255.

You can use the following function in your code to convert a picture to black and white:

def convertBlackWhite(pic):
rows = ImageWriter.getHeight(pic)
columns = ImageWriter.getWidth(pic)
for i in range(0,rows):
for j in range(0,columns):
c = ImageWriter.getColor(pic,j,i)
if sum(c)//3 >= 100:
ImageWriter.setColor(pic,j,i, [255,255,255])
else:
ImageWriter.setColor(pic,j,i,[0,0,0]

Here is an image of a Qatari license plate without any processing

-

Ju%
012345

Figure 1: A regular Qatari license plate

Ar—-H>L0

After converting the image to Black&White, it should look similar to the following image

-

o
012345

Figure 2: After converting the image to Black and White

2.1 Remove Border

The first thing we need to do with the black&white license plate is to remove the border
around it. This allows us to reduce the amount of information that we will have to process.

15-112 Homework 5 Page 3 of 8

To remove the border, we start from the left side of the image. We observe that the left
border is made up of contiguous black pixels and the first white pixel indicates the end of
the border. This is a trivial observation but nonetheless important for our purposes. We
take the image and start at the left most part of each row. Start by looking for the first
black pixel. The top left part of Figure 2 is zoomed in and shown in figure 3

(p g

Figure 3: Top left corner of the license plate

We start from the top row of the image and iterate horizontally through each column
of this row and wait for the first black pixel. When we see the first black pixel, we set its
value to white and after that every black pixel is changed to white until a white pixel is
encountered. This white pixel would indicate the end of border. This process will produce
the image as shown in Figure 4.

Figure 4: License plate with border removed from left side

Notice that we still have the border on the right side leftover. This is because in the
previous step, we started looking at the black pixel from left corner which ignored those
black pixels that are on the right side. To remove this bit of pattern, we use a similar
technique but start from the right side. So start looking at the pixels from the right most
edge of the image and iterated backwards. The first contiguous set of black pixels should be
converted to white resulting in the image shown in Figure 5.

Task 1 (10 pts) Write a function called removeBorder(pic) that takes a picture as input
and removes the border from the picture. The function should not return anything.

Figure 5: Image of the license plate with borders removed

15-112 Homework 5 Page 4 of 8

2.2 Remove Text on the Left

We notice in the remaining image in Figure 5, that we have some text on the left side that
says Qatar. This needs to be removed for us to be able to locate the numbers on the license
plate. Removing this text is similar to removing the border and we approach it in two steps:
In the first step, we find out the location of the start and end of this blob of text. We use
the following algorithm to do that:

Find a vertical blob between
startRow and endRow Starting at inital Column initColumn
x := initColumn
hasBlack := False
while x is less than the width of the image
and hasBlack is False Repeat the following:
go through each row from startRow to endRow
If the current pixel is Black then this row
has at least one black pixel,
set hasBlack to True

go to the next column by incrementing x by 1
#The previous column had a black pixel so save that location
startX := x-1
#now we look for a column that is all white
allWhite := False
#go through all the rows again for each column
while x is less than the width of the image and allWhite is False
#assume that this is an all white line
allWhite := True
go through all the rows from startRow to endRow
if the current color is black then this is not an all white column
allWhite := False
go on to the next column by incrementing x by 1

At this point,

the previous column was an all white column
indicating the end of the text blob.

endX := x-1

At this point startX is the start of column of the blob
and endX is the end column of the blob.

Once we have found the start and end of the text, we need to set all the pixels there to
White. We do that by calling a function that does that.

Task 2 (10 pts) Write a function called findVerticalBlob (pic,startRow, endRow, startCol-
umn). This function returns startX and endX as a list as defined in the algorithm above.

15-112 Homework 5 Page 5 of 8

Task 3 (10 pts) Write a function called removeColor(pic,startz, starty, endz, endy) that
will set all pizels from rows starty to endy and columns startx to endzx to white.

Calling the functions in the following order should clear out the text on the left as shown
in figure 6

columns = findVerticalBlob(pic,0,ImageWriter.getHeight(pic),0)
removeColor(pic, columns[0],0,columns[1],ImageWriter.getHeight (pic))

-

Jux
012345

Figure 6: Image of the license plate with borders and text removed

3 Segmentation

3.1 Horizontal Segmentation

Horizontal segmentation is the first main phase of locating the numerical characters on the
license plate after all the surrounding noise has been reduced. First we will try to detect the
starting row and ending row of the digits and hence the name horizontal segmentation. This
involves writing an algorithm that will determine the location of imaginary red lines “start”
and “end” shown in Figure 7.

-

Jux
12345

Figure 7: Image of the license plate after Horizontal Segmentation (Red lines are only for
illustration purpose)

| G |

This task is accomplished by treating any series of horizontal lines that have any black
pixel as a “blob”. So looking at Figure 6, if we start at the top of the image, there are a
few lines that are all white. Then there is some text which is made up of a group of lines
where each line has some black in it. This is followed by another small group of white lines
and then some text and then a few empty rows. So in all we have two blobs on the image.
If there is some noise in the image, then we might get more than three blobs as shown in
Figure 8. The image in this figure will result in 4 blobs. One extra blob because of thin line
at the top and one because of the line at the bottom.

Our goal is to find the biggest blob. The following algorithm outlines our methodology
for finding the biggest horizontal blob.

15-112 Homework 5 Page 6 of 8

R

Figure 8: License plate with some noisy data

#initialize variables
inBlob := False
start0fBlob := 0O
maxBlob := 0
result := Empty List
blobstart:= 0
Loop through all rows of the image
CurrentColor:= WHITE
For this row, go through each column and
check if there are any black pixels in this row
If black pixels found and inBlob is False
This is start of a blob
Set isBlob to True
save the start of blob
Set start0fBlob to current row
If no black pixels and inBlob is True
Set inBlob to False
Find size of the blob we just finished
If size is bigger than biggest blob we have seen
result = [start0fBlob,current row]
maxBlob = size of this blob
End Loop

Task 4 (10 pts) Write a function called horizontalSegmentation(pic). This function takes
an image that does not have any borders as input argument. This function should determine
the position of the numbers on the license plate and send the top and bottom of the area of
license plate that holds the numbers. This information should be returned as a list of the
format [top, bottom]

3.2 Vertical Segmentation

Once we have the numerical segments located, we will do the rest of the work with only this
segment. Our task now is to figure out the location (start and end) of each of the digits in
this vertical blob. For vertical segmentation, we start from the left most column of the image
and step through each column. For each column we analyze each pixel in this column. In

15-112 Homework 5 Page 7 of 8

the beginning we will find that all pixels are white. As soon as we hit the first digit, the color
will change to black. The first time we collect a black pixel we mark it the start of the digit
and then keep on searching until we see a column that is all white. This would mark the end
of this digit. We repeat this step six times, each time starting from the end of the last digit
in order to search for the next digit. The function we wrote earlier, findVerticalBlob can do
this task as long as we pass in the correct values of startRow, endRow, startColumn. In this
case, startRow and endRow will be the limits we obtained from the horizontalSegmentation
function and startColumn should be the end of the previous digit.

4 Decoding a Digit

Now that we have isolated each digit, recognizing each digit is a simple feature extraction
and statistical analysis task. Feature extraction is just a fancy name for a simple process
described below. Let’s take digit three as an example, we take this digit and divide it in four
quadrants as shown in Figure 9.

Figure 9: Digit 3 divided into four quadrants

Now we calculate the percentage of black pixels in each quadrant of the digit. Percentage
of black is taken by counting all black pixels in a quadrant and dividing it by the total
number of pixels in the quadrant. We do this step for each of the four quadrants. Once
we have these values for each quadrant, we compare with the measured value for each digit
as shown in table 1. The values that match most closely is our prediction for this digit.
Remember that just like in math, the top right quadrant is the first quadrant, the top left
is the quadrant 2, and the rest follow counter clock-wise.

We use statistical analysis for pixel matching. This is again a fancy word for the following
algorithm. Table 1 shows measured values for percentage of black pixels in each quadrant of
each digit. For example, the fourth row in the table shows the percentages for digit 3. As
can be seen from Figure 9 and Table 1, there is a high number of black pixels in Quadrant
1, and the corresponding percentage is 50% in the table. Quadrant 3, has fewer black pixels
and the corresponding percentage in Table 1 is 22%. Also notice that several quadrants have
very similar percentages for different digits. For example, in Quadrant 1, the percentage of
digit 0 and 8 are very similar. Hence we have to use the knowledge of all four quadrants to
determine the digits. We use the following statistical method: Let’s say we have a digit that
we are trying to decode. We take this digit’s Q1 value, and subtract it from Q1 value for
each digit. This shows us how close the two values are. If the difference is small, then the

15-112 Homework 5 Page 8 of 8

Digit | Q1 | Q2 | Q3 Q4
0 0.49 | 0.51 | 0.52 | 0.48
1 0.72 1 0.34 | 0.005 | 0.69
2 0.54 1 0.30 | 0.51 | 0.34
3 0.50 | 0.24 | 0.22 | 0.47
4 0.16 | 0.28 | 0.41 | 0.52
5 0.350.69 | 0.32 | 0.46
6 0.41 | 0.64 | 0.54 | 0.52
7 0.59 |1 0.32 | 0.37 | 0.08
8 0.54 1 0.54 | 0.51 | 0.51
9 0.53 1 0.54 | 0.39 | 0.62

Table 1: A measure of black pixel percentage for each quadrant of each digit

value are similar otherwise they are different. We divide this difference by 4 since we have
four quadrants. We repeat this step for all four quadrants and add the results for each digit.
The digit with the minimum overall difference most closely matches the sample digits and is
our estimation for this digit. Lets say that for a given digit, our values for Q1, Q2, Q3, and
Q4 are 0.12, 0.28, 0.42, 0.54. Then for Digit 0, the absolute difference between corresponding
quadrants is 0.37, 0.23, 0.1, 0.06, with a total difference equal to 0.37/4 + 0.23/4 + 0.1/4
+ 0.06/4 = 0.19. Similarly, for Digit 4 we get values 0.04, 0.00, 0.01, 0.02 with an overall
difference of 0.0175. When we get these overall difference values for all 10 digits, we can
search for the smallest different and that is our estimate for this particular digit.

Task 5 (10 pts) Write a function decodeCharacter(pic,startrow, endrow, startcol, endcol)
that will take a pic as input parameter and decode the number bounded the rectangle repre-
sented by startrow, endrow, startcol, and endcol.

5 Putting it all together

Task 6 (10 pts) Write a function called decodeLicensePlate(filename) that will take a file-
name of a license plate image as input. The function should then load the image represented
by filename and should return a string that represents the number on the license plate. The
decode license plate function should follow these steps:

e Load the image

o (Convert the image to black and white
e Remove the border

e Remove the text blob on the left side
e horizontal segmentation

e vertical segmentation

e Decode each character from horizontal and vertical segmentation and build a list

	Cops!
	Normalization
	Remove Border
	Remove Text on the Left

	Segmentation
	Decoding a Digit
	Putting it all together

