
4/14/20

1

15-112 Fundamentals of
Programming

1

Today

qRegular Expressions

2

4/14/20

2

Background

qWe have written code where we were
looking for specific patterns in a text

qHow have we done it so far?
qGo through the string that holds the text

and look for patterns
qBut there is a better way of doing this

3

Regular Expressions

qA mechanism to specify a pattern that you
are looking for

qFor Example:
§ How do we check if an email address is valid
§ jsmith@cmu.edu
§ jsmith@qatar.cmu.edu

A group of
characters or

numbers
@

One or more of
pattern - chars
followed by a .

edu or com or org
or net

4

4/14/20

3

Regular Expressions
qjsmith@qatar.cmu.edu

qWe should be able to say
§ Make sure that we have a group of chars

followed by a single @ followed by one or
more of the sequence [chars.] followed by a
“com” or “net” or “org” or “edu”

A group of
characters or

numbers
@

One or more of
pattern - chars
followed by a .

edu or com or org
or net

5

Regular Expressions

qRegular expressions allow us to specify
patterns that we want to look for in a string

qimport re – to use Regular expressions
qCreate a pattern that you want to search
qRun the pattern on the string

6

4/14/20

4

A simple Example

q“\d” represents pattern that matches any
digit, e.g. “1”, “2”, “5”, etc.

qExample
s = "You are all number 1"
pattern = "\d"
result = re.search(pattern,s)
print (result.group())

q Group returns None if pattern not found

7

A simple Example (contd.)

q“\d” represents pattern that matches any
digit, e.g. “1”, “2”, “5”, etc.

qExample
s = "You are all number 1"
pattern = "\d"
if re.search(pattern,s):

print (“A number was found”)

8

4/14/20

5

A simple Example (contd.)

q“\d” represents pattern that matches any
digit, e.g. “1”, “2”, “5”, etc.

qExample
s = "You are all number 1"
pattern = "\d"
result = re.search(pattern,s)
print(result.group())
print(result.start())
print(result.end())
print(result.span())

9

Regular Expressions Syntax

q“\d” represents any digit, e.g. “1”, “2”, “9”,
etc.

q“\D” represents any non-digit, e.g. “a”, “b”,
“-”

q“\w” represents any alphanumeric
characters, e.g. “a”, “1”, “z”, “0”

q“\W” represents any non-alphanumeric
character, “-”, “@”

10

4/14/20

6

An other Example
s = "2B! or not 2B!"
r = re.search("\d",s)
print r.group()

r = re.search("\D",s)
print r.group()

r = re.search("\w",s)
print r.group()

r = re.search("\W",s)
print r.group()

q “\d” represents any digit,
e.g. “1”, “2”, “9”, etc.

q “\D” represents any non-
digit, e.g. “a”, “b”, “-”

q “\w” represents any
alphanumeric characters,
e.g. “a”, “1”, “z”, “0”

q “\W” represents any non-
alphanumeric character, “-
”, “@”

11

Regular Expression Syntax

q“\s” represents whitespace, e.g. space,
tab, newline

q“\S” represents non-whitespace
qMost other characters represent

themselves, e.g. “a” represents “a”, “-”
represents “-”, “1” represents “1”

12

4/14/20

7

Syntax Continued

qMatch anything: “.”
§ Matches any single character except newline.
§ “a.b” matches “a” followed by anyone character followed

by “b”
qStart of string: “^”

§ Indicates that the string must start here
qEnd of string: “$”

§ Indicates the string must end here (can’t have more
characters afterwards)

13

Syntax Continued

qAny of the specified characters: []
§ “[abc]” represents “a” or “b” or “c”
§ “[\dabc]” represents any digit or “a” or “b” or “c”
§ Use of “–” in “[]”
+“[a-z]” represents any lower-case alphabet
+“[A-Z]” represents any upper-case alphabet
+“[a-zA-Z]” represents any alphabet
+“[0-9]” represents any digit
+“[e-yF-Z0-9]” represents e to y or F to Z or 0 to 9

14

4/14/20

8

Syntax Continued

qNone of the specified characters: [^]
§ “[^abc]” represents any character except “a” or

“b” or “c”
§ “[^\dabc]” represents any character except any

digit or “a” or “b” or “c”
§ Use of “-” in “[^]”:

+ “[^a-z]” represents any character except any lower-case alphabet
+ “[^A-Z]” represents any character except any upper-case alphabet
+ “[^a-zA-Z]” represents any character except any alphabet
+ “[^0-9]” represents any character except any digit
+ “[^e-yF-Z0-9]” represents any character except e to y or F to Z or 0 to 9

15

Syntax Continued

qSequence of characters represent
sequence of corresponding characters
§ “\d\d” represents two consecutive digits, e.g.

“12”, “33”, etc.
§ “abc” represents “abc”
§ “\w\w\s\w” represents two alphanumeric

charcters, followed by space, followed by one
alphanumeric character, e.g. “ab c”, “12 e”
etc.

16

4/14/20

9

Syntax Continued

qMetacharacter: “*”
§ “a*” represents zero or more “a”, e.g. “”, “a”, “aa”, “aaa”
§ “b*” represents zero or more “b”, e.g. “”, “b”, “bb”, “bbb”
§ “\d*” represents zero or more digits, e.g. “”, “1”, “2”, “2344”
§ “\D*” represents zero or more non-digits
§ “\w*” represents zero or more alphanumeric characters
§ “\s*” represents zero or more whitespaces
§ “[A-Z]*” represents zero or more upper-case alphabets

17

Syntax Continued

qMetacharacter: “+”
§ “a+” represents one or more “a”, e.g. “a”, “aa”, “aaa”
§ “b+” represents one or more “b”, e.g. “b”, “bb”, “bbb”
§ “\d+” represents one or more digits, e.g. “1”, “2”, “23”,

“23442”, etc.
§ “\D+” represents one or more non-digits
§ “\w+” represents one or more alphanumeric

characters
§ “\s+” represents one or more whitespaces
§ “[A-Z]+” represents one or more upper-case

alphabets

18

4/14/20

10

Syntax Continued

qMetacharacters: “{num}”
§ “a{2}” represents two “a”, e.g. “aa”
§ “b{1,3}” represents one, two, or three “b”, e.g. “b”,

“bb”, “bbb”
§ “\d{,3}” represents up to 3 digits, e.g. “1”, “24”, “443”
§ “[a-zA-Z]{3,}” represents at least three letters, e.g.

“abc”, “kitten”, “puppy”

19

Syntax Continued

qSpecial characters need to be prefaced
with “\” if you want to use them.
§ e.g. “\+” matches a plus character, not one or

more instances of “\”

20

4/14/20

11

Examples

21

Alternates

qYou can search of alternate regexes by
using “|” operator

import re
reg = "cat|dog"
s = "the cat ate the mouse"
s2 = "the dog ate the cat"
re.search(reg,s).group()
re.search(reg,s2).group()

22

4/14/20

12

Groups

qYou can specify groups of string matches
by using ()
§ Parentheses group the regex between them.

They capture the text matched by the regex
inside them into a numbered group

§ See the Python documentation for more
details

23

Now try it all out!

qUS phone numbers are frequently written
in the format:

(xnn)nnn-nnnn
where n can be any digit and x is any non-zero digit

q Write a function that takes as input a string and returns
True if the string represents a valid phone number

q Write a python program that reads a phone number,
checks if the number is valid and keeps asking the user
for a phone number until a valid format is entered.

24

4/14/20

13

Regular Expressions Cheat Sheet
. Any character except newline
a The character a
ab The string ab
a* 0 or more a's
\ Escapes special character
* 0 or more
+ 1 or more
? 0 or 1
{2} Exactly 2
{2, 5} Between 2 and 5
{2,} 2 or more
(,5} Up to 5

q [ab-d] One character of: a, b, c, d
q [^ab-d] One character except: a, b,

c, d
q \d One digit
q \D One non-digit
q \s One whitespace
q \S One non-whitespace
q \w represents any alphanumeric

characters, e.g. “a”, “1”, “z”, “0”
q \W represents any non-

alphanumeric character, “-”, “@”

25

