15-112 Spring 2021 Exam 1

Name:

Andrew ID:

e You may not use any books, notes, or electronic devices during this exam.
e You may not ask questions about the exam.
e Show your work on the exam to receive credit.

e You may use the backs of pages as scratch paper. Nothing written on the back of any pages will be
graded.

e All code samples run without crashing. Assume any imports are already included as required.
e You may assume that math, string, and copy are imported; do not import any other modules.

o Do not use dictionaries, sets, try/except, or recursion on this exam. There may be other restrictions
on individual problems.

Page 1 of 10

1. Summarize the Code In two sentences or less, describe, at a high-level, what each piece of the
following functions do. The first one is done for you as an example so that you understand what sort of
things to write.

Note: The “two sentences or less” restriction will be strictly enforced. (This is for your own good...)

Sample

def sampleFunc(p,q):
return math.isclose(p/q,p//q)

Answer: Determines whether or not p divided by q is a whole number.

Part A [5 pts]

def summarizePartA(n):
if n < 15:
return None
else:
return n’(n-7)

Part B [5 pts]

def summarizePartB(f):
mypic = ImageWriter.loadPicture(f)

width = ImageWriter.getWidth(mypic)
height = ImageWriter.getHeight (mypic)

a =[]
for i in range(width):
for j in range(height):
colors = ImageWriter.getColor(mypic, i, j)
a.append(colors[0])
b = sum(a)/len(a)

for i in range(width):
for j in range(height):
colors = ImageWriter.getColor(mypic, i, j)
colors[0] = b
ImageWriter.setColor(mypic, i, j, colors)

ImageWriter.savePicture(mypic, f)

Page 2 of 10

2. Free Response — Number Play [15 pts] Note: You may not use strings or lists in this problem.
If you do, your score on this problem will receive a 10 point deduction.

We will say that a positive integer is tennish (a coined term) if its digits sum to 10. So, 127, 721, and
100200007 are all tennish.

With this in mind, write the function nthTennish(n) that takes a non-negative int n and returns the
nth tennish number. Note that nthTennish(1) returns 19, which is the smallest tennish number.

Page 3 of 10

3. Free Response — Paths [15 pts] We will say that a string is a path if it only contains the letters
U, D, L, or R, which indicate to take one step in the directions up, down, left, and right, respectively.
Two paths are equivalent if, when starting at (0,0) and following those paths, you end up at the same
point.

For example, the path "URUL" goes from (0,0) up to (0,1), right to (1,1), up to (1,2), and left to (0,2).
The path "UU" goes from (0,0) up to (0,1) and up to (0,2). So "URUL" and "UU" are equivalent paths, as
both end at (0,2). Also, note that it is fine for paths to move through negative indexes.

With this in mind, write the function areEquivPaths(pl, p2) that returns True if p1l and p2 are strings
representing equivalent paths, and False otherwise. From the example above, areEquivPaths ("URUL",
"UUu") would return True.

You may assume that p1 and p2 will be non-empty strings that contain only the characters U, D, L, or R.

Hint: You should probably write a helper function that calculates and returns the final location of a path.

Page 4 of 10

4. Free Response — Get Important Words [15 pts] We will consider a word in some text to be
an important word if it starts with a capital letter. The end of an important word is signified by either a
space, a comma, a period, or the end of the text.

For example, consider the string, "The Quick Red, foxJumped over the lazy brown Dog.and got
Away". The important words in this strings are: “The”, “Quick”, “Red”, “Jumped”, “Dog”, and “Away”.

With this in mind, write the function getImpWords (s) that returns a list of all of the important words in s.
From the example above, getImpWords ("The Quick Red, foxJumped over the lazy brown Dog.and
got Away") should return ['The', 'Quick', 'Red', 'Jumped', 'Dog', 'Away']

Page 5 of 10

5. Free Response — Nearly Sorted [20 pts] For the following problem, assume the existence of the
following helper function:

Swap elements 7 and j in list L
def swap(L, i, j):

tmp = L[i]
L[i] = L[j]
L[j] = tmp

Now, on to the problem: We will say that a list is “nearly-sorted” (a coined term) if it is not sorted but it
requires exactly one swap of two of its values to become sorted from least to greatest.

For example. ..

e a=[3,13,7,10,4] is nearly-sorted, since calling swap(a,1,4) results in a sorted list.

e a=[1,2,30] is not nearly-sorted, since it is already sorted.

e a=[9,7,4,1,2,3] is not nearly-sorted, since there is no single swap of two elements that can result
in it being sorted.

With this in mind, write the function checkNearlySorted(L) that takes a list L of integers, and returns
False if the list is not nearly sorted. If the list is nearly sorted, the function does not return True, but
rather it returns the tuple (i, j), where i<j and calling swap(L,i,j) would make the list sorted. So,
from the example above, checkNearlySorted([3,13,7,10,4]) should return (1,4). For full credit,
your function must be non-destructive. Also, do not worry about how efficient your algorithm is.

Page 6 of 10

Extra space for the nearly sorted question.

Page 7 of 10

6. Code Tracing (Part 1) [6 pts]
your final answer.

Hint: There are six lines of output.

def ct1(L):
ret = []
a =20
for item in L:

Indicate what the following program prints. Put a box around

if isinstance(item, str):

for ¢ in item:

if c.isdigit(O:

ret.append(int(c)+5)

print("L1",

ret.insert(0,c)
print("L2", ret)
for item in ret:

ret)

if isinstance(item, int):

a += item
print(a)
return a

print (ct1([5,"78","QA",32]))

Page 8 of 10

7. Code Tracing (Part 2) [9 pts] Indicate what the following program prints. Put a box around
your final answer.

def fa(d,e,f):
d = ["A","B","C"]
e[3] = 43
f[3] = 44
print("d",d)
print("e",d)
print("f",d)

def ctRef():
a = [10,11,12,13]
b = al:]
c=Db
a[0] = "Bob"
b[1] 50
c[2] = 60
print("al",a)
print("b1",b)
print("cl",c)
fa(a,b,c)
print("a2",a)
print("b2",b)
print("c2",c)

ctRef ()

Page 9 of 10

8. Reasoning Over Code [10 pts] For the following function, find a value x which will cause roc1 (x)
to return True. Put a box around your final answer.

def rocl(x):
assert isinstance(x,str)
a=20
nn
for item in x:
if item.isupper():
a += 3
r += item.lower()
elif item.islower():

a += 4
elif item in "Hello,Jim":
a += 1000
return r[::-1] == "kitty" and a == 3031

Page 10 of 10

