Name:

Andrew Id:

1. Code Tracing [5 pts]
final answer.

class A(object):
def __init__(self):
self.b = "Kitten"

def f(self):
print("Cat")

def g(self):
print ("Dog")

def h(self):
print (f"{self.b}:
self.g()

class B(A):
def g(self):
print("Camel")
super ) .g()

15-112 Spring 2021 Quiz 08
25 minutes.

Indicate what the following program prints. Put a box around your

Horse")

class C(B):
def __init__(self, a):
self.b = a
self.f()

def h(self, s):
super () .h()

print(£"{s}: Lion")

def ct():
c = C("Goat")
c.h("Cow")

ctQ



2. Reasoning Over Code [3 pts] For the following code, find a value L which will cause roc(L) to
return True. Put a box around your final answer.

class R(object):
def r(self, L):
if len(L) == 1:
return L[0] > 10 and L[0] < 99 and \
L[0] % 9 == 0 and int(str(L[0])[0]) ==
elif len(L) ==
return self.r(L[:1len(L)//2])
else:
return self.r(L[len(L)//2:])

def roc(L):
assert(len(L) == 5)
t = RO
return t.r(L)



3. Free Response [12 pts] Write the classes Toy and Stuffie so that they pass the following test cases.
You may not hardcode any test cases. For full credit you must use inheritance appropriately as
well as avoid duplicating code needlessly.

# A basic toy has an owner
t = Toy("Susy")

assert(t.getOwners() == "Susy")

assert(str(t) == "Toy (owner=Susy)")

# Toys can also have more than one owner
t.add0wner (" Johnny")

t.add0wner ("Zed")

t.addOwner ("Albus")

# The order the owners are listed matters...
assert(t.getOwners() == "Albus, Johnny,Susy,Zed")
assert(str(t) == "Toy (owner=Albus,Johnny,Susy,Zed)")

# Toy properly handles equivalence checking
n = Toy("Johnny")

n.addOwner ("Albus")

n.addOwner ("Susy")

n.addOwner ("Zed")

assert(t == n)
assert(t != Toy("Billy"))
assert(t != "Johnny")

# A basic stuffie has an owner and a name
s = Stuffie("Hamoodie", "MyBear")
assert(str(s) == "Stuffie (name=MyBear, owner=Hamoodie)")

# Stuffies, like Toys, can also have multiple owners
s.addOwner("Fatima")

# Just like Toys, order of owners listed matters...
assert(s.getOwners() == "Fatima,Hamoodie")

assert(str(s) == "Stuffie (name=MyBear, owner=Fatima,Hamoodie)")

# Stuffie properly handles equivalence checking
s = Stuffie("Hamoodie", "MyBear")
assert(s == Stuffie("Hamoodie", "MyBear"))

assert(s != Toy("Hamoodie"))
assert(s != Stuffie("Billy", "MyBear"))
assert(s != Stuffie("Hamoodie", "YourBear"))

assert(s != 42)

# Verify some inheritance rules...
assert(isinstance(t, Toy) == True)
assert(isinstance(t, Stuffie) == False)
assert(isinstance(s, Toy) == True)
assert(isinstance(s, Stuffie) == True)









