Name: Andrew Id:

15-121 Fall 2023 Assessment 1
Up to 50 minutes. No calculators, no notes, no books, no computers. Show your work!

1. Short Answer.
Answer (a) and (b) in 1 sentence, longer answers will be marked incorrect.

(a) (2 points) What is the difference between public and private when defining instance variables?

(b) (2 points) Describe the relationship between a class and an object.

(¢) (1 point) Write one or two lines of code to generate a random integer between 0 and 15, inclusive.
(Meaning any of the integers from 0 to 15, including 0 and 15, could be the random number chosen.)

2. (4 points) Code Tracing: Indicate what the following program prints. Place your answer (and nothing
else) in the box under the code.

public class IncrementorExercise {
public static void main(String[] args) {
int a = 5;
int b = 6;

System.out.println(++b - --a + ++a - b++ - ++b + b-- + --b);
System.out.println(a);
System.out.println(b);

Page 1 of 7




3. (5 points) Code Tracing: Indicate what the following program prints. Place your answer (and nothing
else) in the box under the code. Hints: There are 10 lines of output. Watch out for static.

public class AICT {
private int a = 0;
private int b = 0;
public static int ¢ = 0;

public A1CT(int b, int a) {
this.a = a;
c=b+ a;

3

public int update(int a) {
this.b = a;
return this.a + this.b;

}

public String toString() {
return "a: " + this.a + ", b:" + this.b;

}

public static void main(String[] args) {
A1CT t1 = new AICT(10, 15);
System.out.println(tl);

A1CT t2 = new AICT(8, 20);
System.out.println(t2);

System.out.println("c: " + tl.c);
System.out.println("c: " + t2.c);

System.out.println(tl.update(7));
System.out.println(t2.update(9));

System.out.println(tl);
System.out.println(t2);
System.out.println("c: " + tl.c);
System.out.println("c: " + t2.c);

Page 2 of 7



4. (10 points) Free Response:

Write a Rectangle class with the following properties:

e A rectangle can be constructed in one of two ways:

1. By specifying the length of of the two sides, each as a double. For example, calling...
Rectangle rl = new Rectangle(3,5);
would create a rectangle with two sides of length 3 and two sides of length 5.

2. By specifying the coordinates of two diagonal corners. For example, calling...
Rectangle r2 = new Rectangle(1,8,5,3);
would create a rectangle where one corner is at (1,8) and the opposite diagonal corner is at (5,3).
In this case, that means it has two sides of length 4 and two sides of length 5. (Note: You do not
need to store the coordinates. We are only concerned with the dimensions of the rectangle.)

e Rectangles are immutable: Once they are created, they never change. (So all instance variables should
be private and you do not need to create setters for them.)

e A rectangle has a method that can be used to calculate its area.

e When printed, a rectangle should print out its dimensions. For example, System.out.println(ril)
should display: 3.0x5.0 Rectangle. System.out.println(r2) should display: 4.0x5.0 Rectangle.

Page 3 of 7



5. Free Response

In this problem you will write a variety of methods in an IntegerList class. An IntegerList is used to
store and operate on a list of integers. The size of an IntegerList is fixed: Once it is created, no new
integers are added or removed.

Consider the following code for the IntegerList class:

public class IntegerList {
// This class only has one instance variable. You may not add any more.
private int[] arr;

public IntegerList(int[] arg) {
// You will write this code
}

private boolean swap(int il, int i2) {
// You will write this code

}

public void reverse() {
// You will write this code
}

public void permute() {
// You will write this code
}

public String toString() {
return Arrays.toString(this.arr);

3

public static void main(String[] args) {
int[] src = { 5, 10, 15, 20 };
IntegerList 1 = new IntegerList(src);
System.out.println(l);
1l.swap(0, 2);
System.out.println(l);
l.reverse();
System.out.println(l);
1.permute();
System.out.println(l);

}
When executed, the main method above printed out the following:

[5, 10, 15, 20]
[15, 10, 5, 20]
[20, 5, 10, 15]
[15, 20, 10, 5]

Note that the last line of output is randomized and would be different if main was run again.

Page 4 of 7



(a) (3 points) Write the constructor, as specified below.

/%%

* Create a new IntegerList containing the values found in the array arg. Later
* changes to the new IntegerList should not modify arg, so you need to copy the
* values from arg, not simply assign arg to arr.

*

* Q@param arg An array containing the integers to put into the IntegerList.

*/

public IntegerList(int[] arg) {

(b) (3 points) Write the method swap, as specified below.

/%%

* Swap two elements in the list.

*

* This is meant to be a helper method for some of the other methods below.

*

* For example, if the integer list currently contains [5, 10, 15] and swap(0,2)
* is called, then afterwards the triple will contain [15, 10, 5]

*

* You need to verify that the arguments passed in are valid. In the previous

* example, calling swap(0,3) is not valid because index 3 is not valid in that
* IntegerList.

*

* Oparam il The index of the first element

* QOparam i2 The index of the element to swap with the first element.

* Q@return True if the swap is successful, and false otherwise

*/

private boolean swap(int i1, int i2) {

Page 5 of 7



(c¢) (5 points) Write the method reverse, as specified below.
/%%
* Reverse the order of the items in the list without creating a new array. (If
* you can't figure out how to do it without a new array, then partial credit
* can be awarded for solutions that use a new array.)
*/

public void reverse() {

Page 6 of 7



(d) (5 points) Write the method permute, as specified below.

/%%

* Randomize the order of the items in the list. All possible outcomes should be
* equally likely.

*

* A recommended algorithm is as follows:

*

* 1. Choose one of the elements at random, and swap it to be the first element
* in the list.

*

* 2. From the remaining elements (not including the first element), choose one
* at random and swap it to be the second element in the list.

*

* 3. From the remaining elements (not including the first or second element),
* choose one at random and swap it to be the third element in the list.

*

* 4. etc.

*/
public void permute() {

Page 7 of 7



